Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.883
Filtrar
1.
J Med Microbiol ; 73(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38629482

RESUMO

Introduction. The first hybrid resistance/virulence plasmid, combining elements from virulence plasmids described in hypervirulent types of Klebsiella pneumoniae with those from conjugative resistance plasmids, was described in an isolate of sequence type (ST) 147 from 2016. Subsequently, this type has been increasingly associated with these plasmids.Hypothesis or gap statement. The extent of carriage of hybrid virulence/resistance plasmids in nosocomial isolates of K. pneumoniae requires further investigation.Aim. To describe the occurrence of virulence/resistance plasmids among isolates of K. pneumoniae received by the UK reference laboratory, particularly among representatives of ST147, and to compare their sequences.Methodology. Isolates received by the laboratory during 2022 and the first half of 2023 (n=1278) were screened for virulence plasmids by PCR detection of rmpA/rmpA2 and typed by variable-number tandem repeat analysis. Twenty-nine representatives of ST147 (including a single-locus variant) from seven hospital laboratories were subjected to long-read nanopore sequencing using high-accuracy q20 chemistry to provide complete assemblies.Results. rmpA/rmpA2 were detected in 110 isolates, of which 59 belonged to hypervirulent K1-ST23, K2-ST86 and K2-ST65/375. Of the remainder, representatives of ST147 formed the largest group, with 22 rmpA/rmpA2-positive representatives (out of 47 isolates). Representatives were from 19 hospital laboratories, with rmpA/rmpA2-positive isolates from 10. Nanopore sequencing of 29 representatives of ST147 divided them into those with no virulence plasmid (n=12), those with non-New Delhi metallo-ß-lactamase (NDM) virulence plasmids (n=6) and those carrying bla NDM-5 (n=9) or bla NDM-1 (n=2) virulence plasmids. These plasmids were of IncFIB(pNDM-Mar)/IncHI1B(pNDM-MAR) replicon types. Most of the non-NDM virulence plasmids were highly similar to the originally described KpvST147L_NDM plasmid. Those carrying bla NDM-5 were highly similar to one another and to previously described plasmids in ST383 and carried an extensive array of resistance genes. Comparison of the fully assembled chromosomes indicated multiple introductions of ST147 in UK hospitals.Conclusion. This study highlights the high proportion of representatives of ST147 that carry IncFIB(pNDM-Mar)/IncHI1B(pNDM-MAR) hybrid resistance virulence plasmids. It is important to be aware of the high probability that representatives of this type carry these plasmids combining resistance and virulence determinants and of the consequent increased risk to patients.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Virulência/genética , Infecções por Klebsiella/epidemiologia , beta-Lactamases/genética , Plasmídeos/genética , Antibacterianos
2.
Euro Surveill ; 29(15)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38606571

RESUMO

BackgroundCarbapenemase-producing Enterobacterales are a public health threat worldwide and OXA-48 is the most prevalent carbapenemase in Germany and western Europe. However, the molecular epidemiology of OXA-48 in species other than Escherichia coli and Klebsiella pneumoniae remains poorly understood.AimTo analyse the molecular epidemiology of OXA-48 and OXA-48-like carbapenemases in Citrobacter species (spp.) in Germany between 2011 and 2022.MethodsData of 26,822 Enterobacterales isolates sent to the National Reference Centre (NRC) for Gram-negative bacteria were evaluated. Ninety-one Citrobacter isolates from 40 German hospitals harbouring bla OXA-48/OXA-48­like were analysed by whole genome sequencing and conjugation experiments.ResultsThe frequency of OXA-48 in Citrobacter freundii (CF) has increased steadily since 2011 and is now the most prevalent carbapenemase in this species in Germany. Among 91 in-depth analysed Citrobacter spp. isolates, CF (n = 73) and C. koseri (n = 8) were the most common species and OXA-48 was the most common variant (n = 77), followed by OXA-162 (n = 11) and OXA­181 (n = 3). Forty percent of the isolates belonged to only two sequence types (ST19 and ST22), while most other STs were singletons. The plasmids harbouring bla OXA­48 and bla OXA-162 belonged to the plasmid types IncL (n = 85) or IncF (n = 3), and plasmids harbouring bla OXA­181 to IncX3 (n = 3). Three IncL plasmid clusters (57/85 IncL plasmids) were identified, which were highly transferable in contrast to sporadic plasmids.ConclusionIn CF in Germany, OXA-48 is the predominant carbapenemase. Dissemination is likely due to distinct highly transmissible plasmids harbouring bla OXA­48 or bla OXA-48-like and the spread of the high-risk clonal lineages ST19 and ST22.


Assuntos
Proteínas de Bactérias , Citrobacter , Humanos , Citrobacter/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Plasmídeos/genética , Klebsiella pneumoniae/genética , Escherichia coli/genética , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
3.
Front Cell Infect Microbiol ; 14: 1345935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572315

RESUMO

Introduction: Bacterial resistance is a major threat to public health worldwide. To gain an understanding of the clinical infection distribution, drug resistance information, and genotype of CRE in Dongguan, China, as well as the resistance of relevant genotypes to CAZ-AVI, this research aims to improve drug resistance monitoring information in Dongguan and provide a reliable basis for the clinical control and treatment of CRE infection. Methods: VITEK-2 Compact automatic analyzer was utilized to identify 516 strains of CRE collected from January 2017 to June 2023. To determine drug sensitivity, the K-B method, E-test, and MIC methods were used. From June 2022 to June 2023, 80 CRE strains were selected, and GeneXpert Carba-R was used to detect and identify the genotype of the carbapenemase present in the collected CRE strains. An in-depth analysis was conducted on the CAZ-AVI in vitro drug sensitivity activity of various genotypes of CRE, and the results were statistically evaluated using SPSS 23.0 and WHONET 5.6 software. Results: This study identified 516 CRE strains, with the majority (70.16%) being K.pneumoniae, followed by E.coli (18.99%). Respiratory specimens had highest detection rate with 53.77% identified, whereas urine specimens had the second highest detection rate with 17.99%. From June 2022 to June 2023, 95% of the strains tested using the CRE GeneXpert Carba-R assay possessed carbapenemase genes, of which 32.5% were blaNDM strains and 61.25% blaKPC strains. The results showed that CRE strains containing blaKPC had a significantly higher rate of resistance to amikacin, cefepime, and aztreonam than those harboring blaNDM. Conclusions: The CRE strains isolated from Dongguan region demonstrated a high resistance rate to various antibiotics used in clinical practice but a low resistance rate to tigecycline. These strains produce Class A serine carbapenemases and Class B metals ß-lactamases, with the majority of them carrying blaNDM and blaKPC. Notably, CRE strains with blaKPC and blaNDM had significantly lower resistance rates to tigecycline. CAZ-AVI showed a good sensitivity rate with no resistance to CRE strains carrying blaKPC. Therefore, CAZ-AVI and tigecycline should be used as a guide for rational use of antibiotics in clinical practice to effectively treat CRE.


Assuntos
Compostos Azabicíclicos , Carbapenêmicos , Ceftazidima , Enterobacteriaceae , Enterobacteriaceae/genética , Carbapenêmicos/farmacologia , Tigeciclina/farmacologia , Sistemas de Distribuição no Hospital , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Combinação de Medicamentos , beta-Lactamases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Cefalosporinas/farmacologia , Klebsiella pneumoniae/genética , Genótipo , Testes de Sensibilidade Microbiana
4.
Emerg Microbes Infect ; 13(1): 2337678, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38629492

RESUMO

Despite carbapenems not being used in animals, carbapenem-resistant Enterobacterales (CRE), particularly New Delhi metallo-ß-lactamase-producing CRE (NDM-CRE), are prevalent in livestock. Concurrently, the incidence of human infections caused by NDM-CRE is rising, particularly in children. Although a positive association between livestock production and human NDM-CRE infections at the national level was identified, the evidence of direct transmission of NDM originating from livestock to humans remains largely unknown. Here, we conducted a cross-sectional study in Chengdu, Sichuan Province, to examine the prevalence of NDM-CRE in chickens and pigs along the breeding-slaughtering-retail chains, in pork in cafeterias of schools, and in colonizations and infections from children's hospital and examined the correlation of NDM-CRE among animals, foods and humans. Overall, the blaNDM increases gradually along the chicken and pig breeding (4.70%/2.0%) -slaughtering (7.60%/22.40%) -retail (65.56%/34.26%) chains. The slaughterhouse has become a hotspot for cross-contamination and amplifier of blaNDM. Notably, 63.11% of pork from the school cafeteria was positive for blaNDM. The prevalence of blaNDM in intestinal and infection samples from children's hospitals was 21.68% and 19.80%, respectively. whole genome sequencing (WGS) analysis revealed the sporadic, not large-scale, clonal spread of NDM-CRE along the chicken and pig breeding-slaughtering-retail chain, with further spreading via IncX3-blaNDM plasmid within each stage of whole chains. Clonal transmission of NDM-CRE is predominant in children's hospitals. The IncX3-blaNDM plasmid was highly prevalent among animals and humans and accounted for 57.7% of Escherichia coli and 91.3% of Klebsiella pneumoniae. Attention should be directed towards the IncX3 plasmid to control the transmission of blaNDM between animals and humans.


Assuntos
Infecções por Enterobacteriaceae , Enterobacteriaceae , Criança , Humanos , Animais , Suínos , Enterobacteriaceae/genética , Estudos Transversais , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Galinhas , Escherichia coli/genética , beta-Lactamases/genética , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Klebsiella pneumoniae/genética , Plasmídeos
5.
BMC Genomics ; 25(1): 381, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632538

RESUMO

Klebsiella pneumoniae is a Gram-negative Enterobacteriaceae that is classified by the World Health Organisation (WHO) as a Priority One ESKAPE pathogen. South and Southeast Asian countries are regions where both healthcare associated infections (HAI) and community acquired infections (CAI) due to extended-spectrum ß-lactamase (ESBL)-producing and carbapenem-resistant K. pneumoniae (CRKp) are of concern. As K. pneumoniae can also exist as a harmless commensal, the spread of resistance genotypes requires epidemiological vigilance. However there has been no significant study of carriage isolates from healthy individuals, particularly in Southeast Asia, and specially Malaysia. Here we describe the genomic analysis of respiratory isolates of K. pneumoniae obtained from Orang Ulu and Orang Asli communities in Malaysian Borneo and Peninsular Malaysia respectively. The majority of isolates were K. pneumoniae species complex (KpSC) 1 K. pneumoniae (n = 53, 89.8%). Four Klebsiella variicola subsp. variicola (KpSC3) and two Klebsiella quasipneumoniae subsp. similipneumoniae (KpSC4) were also found. It was discovered that 30.2% (n = 16) of the KpSC1 isolates were ST23, 11.3% (n = 6) were of ST65, 7.5% (n = 4) were ST13, and 13.2% (n = 7) were ST86. Only eight of the KpSC1 isolates encoded ESBL, but importantly not carbapenemase. Thirteen of the KpSC1 isolates carried yersiniabactin, colibactin and aerobactin, all of which harboured the rmpADC locus and are therefore characterised as hypervirulent. Co-carriage of multiple strains was minimal. In conclusion, most isolates were KpSC1, ST23, one of the most common sequence types and previously found in cases of K. pneumoniae infection. A proportion were hypervirulent (hvKp) however antibiotic resistance was low.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Virulência/genética , Malásia , beta-Lactamases/genética , Carbapenêmicos , Povos Indígenas , Antibacterianos
6.
Front Cell Infect Microbiol ; 14: 1368450, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638833

RESUMO

Objective: To evaluate the antibacterial effect of Tanreqing (TRQ) against K. pneumoniae and its inhibition activity on bacterial biofilm formation in vitro and in vivo, and to explore the mechanism of the inhibitory effects of TRQ on K. pneumoniae biofilm formation. Methods: An in vitro biofilm model of K. pneumoniae was established, and the impact of TRQ on biofilm formation was evaluated using crystal violet staining and scanning electron microscopy (SEM). Furthermore, the clearance effect of TRQ against K. pneumoniae in the biofilm was assessed using the viable plate counting method; q-RT PCR was used to evaluate the inhibitory effect of different concentrations of TRQ on the expression of biofilm-related genes in Klebsiella pneumoniae; The activity of quorum sensing signal molecule AI-2 was detected by Vibrio harveyi bioluminescence assay; Meanwhile, a guinea pig lung infection model of Klebsiella pneumoniae was constructed, and after treated with drugs, pathological analysis of lung tissue and determination of bacterial load in lung tissue were performed. The treatment groups included TRQ group, imipenem(IPM) group, TRQ+IPM group, and sterile saline group as the control. Results: The formation of K. pneumoniae biofilm was significantly inhibited by TRQ in vitro experiments. Furthermore, when combined with IPM, the clearance of K. pneumoniae in the biofilm was notably increased compared to the TRQ group and IPM group alone. q-RT PCR analysis revealed that TRQ down-regulated the expression of genes related to biofilm formation in K. pneumoniae, specifically luxS, wbbm, wzm, and lsrK, and also inhibited the activity of AI-2 molecules in the bacterium. In vivo experiments demonstrated that TRQ effectively treated guinea pig lung infections, resulting in reduced lung inflammation. Additionally, when combined with IPM, there was a significant reduction in the bacterial load in lung tissue. Conclusion: TRQ as a potential therapeutic agent plays a great role in the treatment of K. pneumoniae infections, particularly in combination with conventional antibiotics. And TRQ can enhanced the clearance effect on the bacterium by inhibiting the K. pneumoniae biofilm formation, which provided experimental evidence in support of clinical treatment of TRQ against K. pneumoniae infections.


Assuntos
Medicamentos de Ervas Chinesas , Infecções por Klebsiella , Pneumonia , Animais , Cobaias , Klebsiella pneumoniae/genética , Percepção de Quorum , Biofilmes , Antibacterianos/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia
7.
Euro Surveill ; 29(16)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639094

RESUMO

In 2023, an increase of OXA-48-producing Klebsiella pneumoniae was noticed by the Lithuanian National Public Health Surveillance Laboratory. Whole genome sequencing (WGS) of 106 OXA-48-producing K. pneumoniae isolates revealed three distinct clusters of carbapenemase-producing K. pneumoniae high-risk clones, including sequence type (ST) 45 (n = 35 isolates), ST392 (n = 32) and ST395 (n = 28), involving six, six and nine hospitals in different regions, respectively. These results enabled targeted investigation and control, and underscore the value of national WGS-based surveillance for antimicrobial resistance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Lituânia/epidemiologia , Tipagem de Sequências Multilocus , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , beta-Lactamases/genética , Proteínas de Bactérias/genética , Hospitais , Surtos de Doenças , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
8.
PLoS Pathog ; 20(4): e1011900, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38578798

RESUMO

In vivo single-cell approaches have transformed our understanding of the immune populations in tissues. Mass cytometry (CyTOF), that combines the resolution of mass spectrometry with the ability to conduct multiplexed measurements of cell molecules at the single cell resolution, has enabled to resolve the diversity of immune cell subsets, and their heterogeneous functionality. Here we assess the feasibility of taking CyTOF one step further to immuno profile cells while tracking their interactions with bacteria, a method we term Bac-CyTOF. We focus on the pathogen Klebsiella pneumoniae interrogating the pneumonia mouse model. Using Bac-CyTOF, we unveil the atlas of immune cells of mice infected with a K. pneumoniae hypervirulent strain. The atlas is characterized by a decrease in the populations of alveolar and monocyte-derived macrophages. Conversely, neutrophils, and inflammatory monocytes are characterized by an increase in the subpopulations expressing markers of less active cells such as the immune checkpoint PD-L1. These are the cells infected. We show that the type VI secretion system (T6SS) contributes to shape the lung immune landscape. The T6SS governs the interaction with monocytes/macrophages by shifting Klebsiella from alveolar macrophages to interstitial macrophages and limiting the infection of inflammatory monocytes. The lack of T6SS results in an increase of cells expressing markers of active cells, and a decrease in the subpopulations expressing PD-L1. By probing Klebsiella, and Acinetobacter baumannii strains with limited ability to survive in vivo, we uncover that a heightened recruitment of neutrophils, and relative high levels of alveolar macrophages and eosinophils and the recruitment of a characteristic subpopulation of neutrophils are features of mice clearing infections. We leverage Bac-CyTOF-generated knowledge platform to investigate the role of the DNA sensor STING in Klebsiella infections. sting-/- infected mice present features consistent with clearing the infection including the reduced levels of PD-L1. STING absence facilitates Klebsiella clearance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Camundongos , Animais , Klebsiella pneumoniae/genética , Antígeno B7-H1 , Macrófagos Alveolares , Pulmão , Macrófagos , Infecções por Klebsiella/microbiologia
9.
Front Cell Infect Microbiol ; 14: 1372704, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601740

RESUMO

In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient's urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic "hyper-splitting" in a K. pneumoniae SCV and its potential clinical significance.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Fenótipo , Sequenciamento Completo do Genoma , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Klebsiella/microbiologia
10.
J Infect Dev Ctries ; 18(3): 383-390, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635605

RESUMO

INTRODUCTION: The spread of Carbapenemase-producing Enterobacterales (CPEs) has become a significant concern in Algeria, with limited data available on their presence in community settings. This research investigated the resistance mechanisms of carbapenem-resistant Enterobacterales (CREs) collected from hospitals and the community in Skikda city, Algeria, between December 2020 and June 2022. METHODOLOGY: The study collected Enterobacterales strains resistant to ertapenem from inpatient and outpatient populations. An automated system was used for identification and antibiotic susceptibility testing. ß-lactamase production was evaluated through phenotypic tests and confirmed by standard PCR. Lastly, the carbapenemase genes were sequenced using the Sanger method. RESULTS: 17 CRE were isolated, with 9 from inpatients and 8 from outpatients. These isolates belonged to four species: Klebsiella pneumoniae (n = 8), Escherichia coli (n = 6), Enterobacter cloacae (n = 1), and Proteus mirabilis (n = 1). Of 15 CPEs, 11 were extended-spectrum ß-lactamases (ESBLs) positive, 5 were plasmid-mediated cephalosporinase (AmpC) positive, and 1 harbored all three ß-lactamases. All metallo-ß-lactamase-producing strains carried the New Delhi metallo-beta-lactamase gene (blaNDM), including 5 NDM-1 and 7 NDM-5 variants. The presence of blaOXA-48 and blaOXA-244 was observed in one outpatient strain each. NDM was associated with Cefotaximase Munich (CTX-M) ESBL in 8 isolates, while Cephamycinase (CMY) was detected in 3 NDM-5-producing E. coli. CONCLUSIONS: This research highlights the rising prevalence of carbapenemases NDM-1 and NDM-5 among inpatients and outpatients and supports the notion that OXA-48 is becoming increasingly widespread beyond Algerian hospitals.


Assuntos
Escherichia coli , Pacientes Ambulatoriais , Humanos , Pacientes Internados , Antibacterianos/farmacologia , Argélia/epidemiologia , Prevalência , beta-Lactamases/genética , Proteínas de Bactérias/genética , Klebsiella pneumoniae/genética , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
11.
Sci Rep ; 14(1): 8103, 2024 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582880

RESUMO

Antimicrobial resistance genes (ARG), such as extended-spectrum ß-lactamase (ESBL) and carbapenemase genes, are commonly carried on plasmids. Plasmids can transmit between bacteria, disseminate globally, and cause clinically important resistance. Therefore, targeting plasmids could reduce ARG prevalence, and restore the efficacy of existing antibiotics. Cobalt complexes possess diverse biological activities, including antimicrobial and anticancer properties. However, their effect on plasmid conjugation has not been explored yet. Here, we assessed the effect of four previously characterised bis(N-picolinamido)cobalt(II) complexes lacking antibacterial activity on plasmid conjugation in Escherichia coli and Klebsiella pneumoniae. Antimicrobial susceptibility testing of these cobalt complexes confirmed the lack of antibacterial activity in E. coli and K. pneumoniae. Liquid broth and solid agar conjugation assays were used to screen the activity of the complexes on four archetypical plasmids in E. coli J53. The cobalt complexes significantly reduced the conjugation of RP4, R6K, and R388 plasmids, but not pKM101, on solid agar in E. coli J53. Owing to their promising activity, the impact of cobalt complexes was tested on the conjugation of fluorescently tagged extended-spectrum ß-lactamase encoding pCTgfp plasmid in E. coli and carbapenemase encoding pKpQILgfp plasmid in K. pneumoniae, using flow cytometry. The complexes significantly reduced the conjugation of pKpQILgfp in K. pneumoniae but had no impact on pCTgfp conjugation in E. coli. The cobalt complexes did not have plasmid-curing activity, suggesting that they target conjugation rather than plasmid stability. To our knowledge, this is the first study to report reduced conjugation of clinically relevant plasmids with cobalt complexes. These cobalt complexes are not cytotoxic towards mammalian cells and are not antibacterial, therefore they could be optimised and employed as inhibitors of plasmid conjugation.


Assuntos
Anti-Infecciosos , Infecções por Klebsiella , Animais , Ágar , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , beta-Lactamases/genética , Escherichia coli/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Mamíferos/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética
12.
BMC Infect Dis ; 24(1): 378, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582858

RESUMO

INTRODUCTION: Carbapenem-resistant gram-negative bacilli are a worldwide concern because of high morbidity and mortality rates. Additionally, the increasing prevalence of these bacteria is dangerous. To investigate the extent of antimicrobial resistance and prioritize the utility of novel drugs, we evaluated the molecular characteristics and antimicrobial susceptibility profiles of carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii in Ecuador in 2022. METHODS: Ninety-five clinical isolates of carbapenem non-susceptible gram-negative bacilli were collected from six hospitals in Ecuador. Carbapenem resistance was confirmed with meropenem disk diffusion assays following Clinical Laboratory Standard Institute guidelines. Carbapenemase production was tested using a modified carbapenemase inactivation method. Antimicrobial susceptibility was tested with a disk diffusion assay, the Vitek 2 System, and gradient diffusion strips. Broth microdilution assays were used to assess colistin susceptibility. All the isolates were screened for the blaKPC, blaNDM, blaOXA-48, blaVIM and blaIMP genes. In addition, A. baumannii isolates were screened for the blaOXA-23, blaOXA-58 and blaOXA-24/40 genes. RESULTS: Carbapenemase production was observed in 96.84% of the isolates. The blaKPC, blaNDM and blaOXA-48 genes were detected in Enterobacterales, with blaKPC being predominant. The blaVIM gene was detected in P. aeruginosa, and blaOXA-24/40 predominated in A. baumannii. Most of the isolates showed co-resistance to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. Both ceftazidime/avibactam and meropenem/vaborbactam were active against carbapenem-resistant gram-negative bacilli that produce serin-carbapenemases. CONCLUSION: The epidemiology of carbapenem resistance in Ecuador is dominated by carbapenemase-producing K. pneumoniae harbouring blaKPC. Extensively drug resistant (XDR) P. aeruginosa and A. baumannii were identified, and their identification revealed the urgent need to implement strategies to reduce the dissemination of these strains.


Assuntos
Carbapenêmicos , beta-Lactamases , Humanos , Carbapenêmicos/farmacologia , Meropeném , Epidemiologia Molecular , Equador/epidemiologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Bactérias Gram-Negativas/genética , Klebsiella pneumoniae/genética , Pseudomonas aeruginosa/genética
13.
PLoS One ; 19(4): e0300596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578750

RESUMO

INTRODUCTION: Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae are pathogens of significant public health interest for which new antibiotics are urgently needed. AIM: To determine the prevalence of ESBLs in E. coli and K. pneumoniae isolates from patients attending the Tamale Teaching Hospital (TTH) in Ghana. METHODOLOGY: The study was a cross-sectional study involving convenience sampling of E. coli and K. pneumoniae isolates from consenting patients' clinical specimens, between April and June 2015. Antimicrobial susceptibility test was performed, and ESBL-producer phenotypes were further screened for BlaTEM, BlaSHV, and BlaCTX-M genes. Patients' clinical data were additionally collected using a structured questionnaire. RESULTS: Of the 150 non-duplicate E. coli and K. pneumoniae isolates identified, 140 were confirmed as E. coli (84%, n = 117) and K. pneumoniae (16%, n = 23). Of these, sixty-two (44%) [E. coli (84%; n = 52); K. pneumoniae (16%; n = 10)] phenotypically expressed ESBLs. The proportion of ESBL-producing isolates was higher in adults (15-65 years) than in neonates (< 28 days) (p = 0.14). Most of the isolates showed a high percentage resistance to ampicillin (96%) and tetracycline (89%), but a relatively lower resistance to amikacin (36%). No isolate was resistant to meropenem. More ESBL producers were multidrug resistant compared to non-ESBL-producers [23% (14/62) versus 18% (14/78); p = 0.573]. Overall, 74% (n = 46) of the ESBL genotypes expressed BlaCTX-M-1 genes, followed by 63% (n = 39) BlaTEM, and 16% (n = 10) BlaSHV. The study showed a high prevalence of ESBL-positive E. coli and K. pneumoniae, mostly CTX-M-1 producers at TTH. CONCLUSION: Routine laboratory ESBL screening is warranted to inform patient management.


Assuntos
Infecções por Escherichia coli , Infecções por Klebsiella , Adulto , Recém-Nascido , Humanos , Escherichia coli/genética , Klebsiella pneumoniae/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/genética , Estudos Transversais , Gana/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Hospitais de Ensino , Testes de Sensibilidade Microbiana
14.
Microbiol Res ; 282: 127672, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447456

RESUMO

Antibiotic resistance is a global health issue, with Klebsiella pneumoniae (KP) posing a particular threat due to its ability to acquire resistance to multiple drug classes rapidly. OXA-232 is a carbapenemase that confers resistance to carbapenems, a class of antibiotics often used as a last resort for treating severe bacterial infections. The study reports the earliest known identification of six OXA-232-producing KP strains that were isolated in Zhejiang, China, in 2008 and 2009 within a hospital, two years prior to the first reported identification of OXA-232 in France. The four KP strains carry the OXA-232 gene and exhibit hypervirulent loci, suggesting a broader temporal and geographical spread and integration of this resistance and virulence than previously recognized with implications for public health. Global analysis of all OXA-232-bearing KP strains revealed that OXA-232-encoding plasmids are conservative, while the strains were very diverse suggesting the plasmid mediated transmission of this carbapenemase genes. Importantly, a large proportion of the OXA-232-bearing KP strains also carried virulence plasmids, in particular the recent emergence of ST15 type of KP that carried both OXA-232-encoding plasmids and hypervirulent (hv) plasmids in China since 2019, highlighting the importance of the emergence of this type of KP strains in clinical setting. The early detection and investigations of OXA-232 in these strains warrants the retrospective studies to uncover the true timeline of antibiotic resistance spread, which could provide valuable insights for shaping future strategies to tackle the global health crisis.


Assuntos
Proteínas de Bactérias , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Estudos Retrospectivos , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Plasmídeos/genética , China
15.
Antonie Van Leeuwenhoek ; 117(1): 57, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491220

RESUMO

Carbapenem resistant Klebsiella pneumoniae causing severe infection resulting in morbidity and mortality have become a global health concern. K. pneumoniae with sequence type ST147 is an international high-risk clonal lineage, genomic studies have been done on K. pneumoniae ST147 isolated from clinical origin but genomic data for environmental K. pneumoniae ST147 is very scarce. Herein, K. pneumoniae IITR008, an extensively drug resistant and potentially hypervirulent bacterium, was isolated from Triveni Sangam, the confluence of three rivers where religious congregations are organized. Phenotypic, genomic and comparative genomic analysis of strain IITR008 was performed. Antibiotic susceptibility profiling revealed resistance to 9 different classes of antibiotics including ß-lactams, ß-lactam combination agents, carbapenem, aminoglycoside, macrolide, quinolones, cephams, phenicol, and folate pathway antagonists and was found to be susceptible to only tetracycline. The strain IITR008 possesses hypervirulence genes namely, iutA and iroN in addition to numerous virulence factors coding for adherence, regulation, iron uptake, secretion system and toxin. Both the IITR008 chromosome and plasmid pIITR008_75 possess a plethora of clinically relevant antibiotic-resistant genes (ARGs) including blaCTX-M-15, blaTEM-1, and blaSHV-11, corroborating the phenotypic resistance. Comparative genomic analysis with other ST147 K. pneumoniae provided insights on the phylogenetic clustering of IITR008 with a clinical strain isolated from a patient in Czech with recent travel history in India and other clinical strains isolated from India and Pakistan. According to the 'One Health' perspective, surveillance of antibiotic resistance in the environment is crucial to impede its accelerated development in diverse ecological niches.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Filogenia , Rios , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos , Plasmídeos , Genômica , Ferro , Água , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
16.
Front Cell Infect Microbiol ; 14: 1324895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465230

RESUMO

Klebsiella pneumoniae is a Gram-negative bacterium within the Enterobacteriaceae family that can cause multiple systemic infections, such as respiratory, blood, liver abscesses and urinary systems. Antibiotic resistance is a global health threat and K. pneumoniae warrants special attention due to its resistance to most modern day antibiotics. Biofilm formation is a critical obstruction that enhances the antibiotic resistance of K. pneumoniae. However, knowledge on the molecular mechanisms of biofilm formation and its relation with antibiotic resistance in K. pneumoniae is limited. Understanding the molecular mechanisms of biofilm formation and its correlation with antibiotic resistance is crucial for providing insight for the design of new drugs to control and treat biofilm-related infections. In this review, we summarize recent advances in genes contributing to the biofilm formation of K. pneumoniae, new progress on the relationship between biofilm formation and antibiotic resistance, and new therapeutic strategies targeting biofilms. Finally, we discuss future research directions that target biofilm formation and antibiotic resistance of this priority pathogen.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Resistência Microbiana a Medicamentos , Biofilmes , Testes de Sensibilidade Microbiana
17.
mSystems ; 9(4): e0136923, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38506533

RESUMO

The high-risk clone Klebsiella pneumoniae ST307, associated with various carbapenem resistance genes, exhibits a global distribution and prevalence. However, in China, it has remained sporadic and has rarely been detected. In this study, we reported an outbreak caused by nine ST307 CRKP isolates harboring blaNDM-5 in Shanghai, China, in 2022. We employed antimicrobial susceptibility testing, conjugation assay, whole-genome sequencing (WGS) and comparative genomics, phylogenetic analysis, and fitness and virulence comparison to further characterize the isolates causing the outbreak. Besides blaNDM-5, these nine isolates co-carried blaCTX-M-15 and blaDHA-1, exhibiting nearly identical resistance profiles with high-level resistance to carbapenems and ceftazidime/avibactam, while showing susceptibility to colistin and tigecycline. blaNDM-5 was located on an IncX3 plasmid of 45,403 bp with a high frequency of conjugative ability. Phylogenetic and single-nucleotide polymorphism (SNP) analysis indicated the nature of clonal transmission with a maximum of five SNPs between these nine isolates, and they were closely related to strains obtained from the United States. ST307 isolates in our study showed a relatively lower virulence but higher growth rates and certain adaptability compared with ST11 isolates. Clinical investigation revealed that shared nursing staff in a mixed emergency intensive care unit ward and doctors' movement between wards might be responsible for the outbreak. The nonexistence before and sudden emergence of ST307 suggested that the currently circulating ST307 clone was a newly introduced superbug in our hospital. In conclusion, we revealed that blaNDM-5-producing ST307 CRKP isolates, a globally significant high-risk clone, are spreading in China, posing a substantial threat to public health.IMPORTANCEThe high-risk clone ST307, associated with various carbapenemases, including KPC, NDM, and OXA, has a global distribution. However, it is rarely reported in China, let alone causing outbreaks. Here, we found an outbreak caused by the clonal transmission of nine ST307 CRKP isolates. Clinical investigation revealed that shared nurses in a mixed emergency intensive care unit ward and doctors' movement between wards might be responsible for the outbreak. In our study, the nine NDM-5-producing ST307 isolates exhibited high-level resistance to carbapenems and ceftazidime-avibactam, high conjugative ability to Escherichia coli J53, and certain adaptability to environment, phylogenetically closet to the United States. All these features make ST307 clone the next successful clone comparable to ST11 clone in China. Therefore, it is imperative for us to vigilantly monitor the prevalence of carbapenem-resistant Klebsiella pneumoniae and promptly implement measures to control the spread of K. pneumoniae ST307 in China.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Antibacterianos/farmacologia , Infecções por Klebsiella/tratamento farmacológico , Filogenia , Tipagem de Sequências Multilocus , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , China/epidemiologia , Carbapenêmicos , Escherichia coli , Surtos de Doenças
18.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38547398

RESUMO

The hypervirulent lineages of Klebsiella pneumoniae (HvKp) cause invasive infections such as Klebsiella-liver abscess. Invasive infection often occurs after initial colonization of the host gastrointestinal tract by HvKp. Over 80% of HvKp isolates belong to the clonal group 23 sublineage I that has acquired genomic islands (GIs) GIE492 and ICEKp10. Our analysis of 12 361 K. pneumoniae genomes revealed that GIs GIE492 and ICEKp10 are co-associated with the CG23-I and CG10118 HvKp lineages. GIE492 and ICEKp10 enable HvKp to make a functional bacteriocin microcin E492 (mccE492) and the genotoxin colibactin, respectively. We discovered that GIE492 and ICEKp10 play cooperative roles and enhance gastrointestinal colonization by HvKp. Colibactin is the primary driver of this effect, modifying gut microbiome diversity. Our in vitro assays demonstrate that colibactin and mccE492 kill or inhibit a range of Gram-negative Klebsiella species and Escherichia coli strains, including Gram-positive bacteria, sometimes cooperatively. Moreover, mccE492 and colibactin kill human anaerobic gut commensals that are similar to the taxa found altered by colibactin in the mouse intestines. Our findings suggest that GIs GIE492 and ICEKp10 enable HvKp to kill several commensal bacterial taxa during interspecies interactions in the gut. Thus, acquisition of GIE492 and ICEKp10 could enable better carriage in host populations and explain the dominance of the CG23-I HvKp lineage.


Assuntos
Ilhas Genômicas , Klebsiella pneumoniae , Peptídeos , Policetídeos , Animais , Camundongos , Humanos , Virulência , Klebsiella pneumoniae/genética , Fatores de Virulência/genética , Antibacterianos/farmacologia
19.
Nat Commun ; 15(1): 2558, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519509

RESUMO

Encapsulins are self-assembling protein nanocompartments capable of selectively encapsulating dedicated cargo proteins, including enzymes involved in iron storage, sulfur metabolism, and stress resistance. They represent a unique compartmentalization strategy used by many pathogens to facilitate specialized metabolic capabilities. Encapsulation is mediated by specific cargo protein motifs known as targeting peptides (TPs), though the structural basis for encapsulation of the largest encapsulin cargo class, dye-decolorizing peroxidases (DyPs), is currently unknown. Here, we characterize a DyP-containing encapsulin from the enterobacterial pathogen Klebsiella pneumoniae. By combining cryo-electron microscopy with TP and TP-binding site mutagenesis, we elucidate the molecular basis for cargo encapsulation. TP binding is mediated by cooperative hydrophobic and ionic interactions as well as shape complementarity. Our results expand the molecular understanding of enzyme encapsulation inside protein nanocompartments and lay the foundation for rationally modulating encapsulin cargo loading for biomedical and biotechnological applications.


Assuntos
Proteínas de Bactérias , Peroxidase , Proteínas de Bactérias/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Microscopia Crioeletrônica , Peroxidases/metabolismo
20.
Medicina (Kaunas) ; 60(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38541237

RESUMO

Background and Objective: Klebsiella pneumoniae appears to be a significant problem due to its ability to accumulate antibiotic-resistance genes. After 2013, alarming colistin resistance rates among carbapenem-resistant K. pneumoniae have been reported in the Balkans. The study aims to perform an epidemiological, clinical, and genetic analysis of a local outbreak of COLr CR-Kp. Material and Methods: All carbapenem-resistant and colistin-resistant K. pneumoniae isolates observed among patients in the ICU unit of Military Medical Academy, Sofia, from 1 January to 31 October 2023, were included. The results were analyzed according to the EUCAST criteria. All isolates were screened for blaVIM, blaIMP, blaKPC, blaNDM, and blaOXA-48. Genetic similarity was determined using the Dice coefficient as a similarity measure and the unweighted pair group method with arithmetic mean (UPGMA). mgrB genes and plasmid-mediated colistin resistance determinants (mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5) were investigated. Results: There was a total of 379 multidrug-resistant K. pneumoniae isolates, 88% of which were carbapenem-resistant. Of these, there were nine (2.7%) colistin-resistant isolates in six patients. A time and space cluster for five patients was found. Epidemiology typing showed that two isolates belonged to clone A (pts. 1, 5) and the rest to clone B (pts. 2-4) with 69% similarity. Clone A isolates were coproducers of blaNDM-like and blaOXA-48-like and had mgrB-mediated colistin resistance (40%). Clone B isolates had only blaOXA-48-like and intact mgrB genes. All isolates were negative for mcr-1, -2, -3, -4, and -5 genes. Conclusions: The study describes a within-hospital spread of two clones of COLr CR-Kp with a 60% mortality rate. Clone A isolates were coproducers of NDM-like and OXA-48-like enzymes and had mgrB-mediated colistin resistance. Clone B isolates had only OXA-48-like enzymes and intact mgrB genes. No plasmid-mediated resistance was found. The extremely high mortality rate and limited treatment options warrant strict measures to prevent outbreaks.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Colistina/farmacologia , Colistina/uso terapêutico , Klebsiella pneumoniae/genética , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/uso terapêutico , Hospitais , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...